数学形态学的组成

2024-07-19 07:06

1. 数学形态学的组成

数学形态学是由一组形态学的代数运算子组成的,它的基本运算有4个: 膨胀(或扩张)、腐蚀(或侵蚀)、开启和闭合, 它们在二值图像和灰度图像中各有特点。基于这些基本运算还可推导和组合成各种数学形态学实用算法,用它们可以进行图像形状和结构的分析及处理,包括图像分割、特征抽取、边缘检测、 图像滤波、图像增强和恢复等。数学形态学方法利用一个称作结构元素的“探针”收集图像的信息,当探针在图像中不断移动时, 便可考察图像各个部分之间的相互关系,从而了解图像的结构特征。数学形态学基于探测的思想,与人的FOA(Focus Of Attention)的视觉特点有类似之处。作为探针的结构元素,可直接携带知识(形态、大小、甚至加入灰度和色度信息)来探测、研究图像的结构特点。

数学形态学的组成

2. 数学形态学的介绍

数学形态学(Mathematical Morphology)诞生于1964年,是由法国巴黎矿业学院博士生赛拉(J. Serra)和导师马瑟荣,在从事铁矿核的定量岩石学分析及预测其开采价值的研究中提出“击中/击不中变换”, 并在理论层面上第一次引入了形态学的表达式,建立了颗粒分析方法。他们的工作奠定了这门学科的理论基础, 如击中/击不中变换、开闭运算、布尔模型及纹理分析器的原型等。数学形态学的基本思想是用具有一定形态的结构元素去量度和提取图像中的对应形状以达到对图像分析和识别的目的。

3. 形态学的数学形态学

数学形态学(Mathematical morphology) 是一门建立在格论和拓扑学基础之上的图像分析学科,是数学形态学图像处理的基本理论。其基本的运算包括:二值腐蚀和膨胀、二值开闭运算、骨架抽取、极限腐蚀、击中击不中变换、形态学梯度、Top-hat变换、颗粒分析、流域变换、灰值腐蚀和膨胀、灰值开闭运算、灰值形态学梯度等。膨胀 dilation考虑两幅二值图像A,B。它们的前景用黑色,背景用白色。另fA和fB表示各自前景点的集合。定义膨胀运算为:dilation(A,B) = {a+b| a∈A,b∈B}。比如: A = {(2,8),(3,6),(4,4),(5,6),(6,4),(7,6),(8,8)} B = {(0,0),(0,1)} dilation(A,B) = {(2,7),(2,8),(3,5),(3,6),(4,3),(4,4),(5,5),(5,6),(6,3),(6,4),(7,5),(7,6),(8,7),(8,8)}腐蚀 erosion同样考虑两幅图像A,B。定义腐蚀运算为: erosion(A,B) = {a|(a+b)∈A, a∈A,b∈B}.膨胀腐蚀运算的性质交换律 dilation(A,B) = dilation(B,A) 结合律 dilation(dilation(A,B),C) = dilation(A,dilation(B,C)) 并集 dilation(A,B∪C) = dilation(A,B)∪dilation(A,C) 增长性 if A blongs to B then dilation(A,K) blongs to dilation(B,K)历史数学形态学诞生于1964年,由当时法国巴黎矿业学院的马瑟荣(G. Matheron)和赛拉(J. Serra)两人共同奠定了其理论基础。1968年4月法国枫丹白露数学形态学研究中心成立,巴黎矿业学院为中心提供了研究基地。20世纪数学形态学的发展过程可大致分为:60年代的孕育和形成期70年代的充实和发展期80年代的成熟和对外开放期90年代至今的扩展期

形态学的数学形态学

4. 数学形态学的数学基础

数学形态学的数学基础和所用语言是集合论,因此它具有完备的数学基础,这为形态学用于图像分析和处理、形态滤波器的特性分析和系统设计奠定了坚实的基础。数学形态学的应用可以简化图像数据,保持它们基本的形状特性,并除去不相干的结构。数学形态学的算法具有天然的并行实现的结构, 实现了形态学分析和处理算法的并行,大大提高了图像分析和处理的速度。